

Deep Learning

5.1 Crossentropy loss

Dr. Konda Reddy Mopuri kmopuri@iittp.ac.in Dept. of CSE, IIT Tirupati

■ Dataset looks like $(x_n, y_n) \in \mathcal{R}^D \times \{1, 2, ..., C\}, n = 1, 2, ..., N$

- Dataset looks like $(x_n, y_n) \in \mathcal{R}^D \times \{1, 2, ..., C\}, n = 1, 2, ..., N$
- 2 Say $C = 3$, and we employ MSE loss on a sample with $y_n = 1$

- **1** Dataset looks like (x_n, y_n) ∈ \mathcal{R}^D × $\{1, 2, ..., C\}, n = 1, 2, ..., N$
- 2 Say $C = 3$, and we employ MSE loss on a sample with $y_n = 1$
- 3 One-hot encoding $\rightarrow \{0, 1, 0\}$

- Dataset looks like $(x_n, y_n) \in \mathcal{R}^D \times \{1, 2, ..., C\}, n = 1, 2, ..., N$
- 2 Say $C = 3$, and we employ MSE loss on a sample with $y_n = 1$
- 3 One-hot encoding $\rightarrow \{0, 1, 0\}$
- ⁴ Consider two predictions *y*¹ = {−2*.*0*,* 1*.*5 − 3*.*0} and *y*₂ = {0*.*5*,* −3*.*0*,* −3*.*0}

- Dataset looks like $(x_n, y_n) \in \mathcal{R}^D \times \{1, 2, ..., C\}, n = 1, 2, ..., N$
- 2 Say $C = 3$, and we employ MSE loss on a sample with $y_n = 1$
- 3 One-hot encoding $\rightarrow \{0, 1, 0\}$
- ⁴ Consider two predictions *y*¹ = {−2*.*0*,* 1*.*5 − 3*.*0} and *y*₂ = {0*.*5*,* −3*.*0*,* −3*.*0}
- ⁵ Both result in the same (13*.*25) loss value

- Dataset looks like $(x_n, y_n) \in \mathcal{R}^D \times \{1, 2, ..., C\}, n = 1, 2, ..., N$
- 2 Say $C = 3$, and we employ MSE loss on a sample with $y_n = 1$
- 3 One-hot encoding $\rightarrow \{0, 1, 0\}$
- ⁴ Consider two predictions *y*¹ = {−2*.*0*,* 1*.*5 − 3*.*0} and *y*₂ = {0*.*5*,* −3*.*0*,* −3*.*0}
- ⁵ Both result in the same (13*.*25) loss value
- ⁶ However, *y*¹ is clearly predicting more score for the groundtruth class and *y*² predicts strongest to a wrong class

- Dataset looks like $(x_n, y_n) \in \mathcal{R}^D \times \{1, 2, ..., C\}, n = 1, 2, ..., N$
- 2 Say $C = 3$, and we employ MSE loss on a sample with $y_n = 1$
- 3 One-hot encoding $\rightarrow \{0, 1, 0\}$
- ⁴ Consider two predictions *y*¹ = {−2*.*0*,* 1*.*5 − 3*.*0} and *y*₂ = {0*.*5*,* −3*.*0*,* −3*.*0}
- ⁵ Both result in the same (13*.*25) loss value
- ⁶ However, *y*¹ is clearly predicting more score for the groundtruth class and *y*² predicts strongest to a wrong class
- ⁷ MSE in not suitable for classification

¹ For each input **x** we have a target label *y*

- ¹ For each input **x** we have a target label *y*
- ² One-hot encoding converts *y* to a pmf (**p**) (e.g., $y_n = 2 \rightarrow \{0, 0, 1, 0\}$

- ¹ For each input **x** we have a target label *y*
- ² One-hot encoding converts *y* to a pmf (**p**) (e.g., $y_n = 2 \rightarrow \{0, 0, 1, 0\}$
- ³ Hence, the DNN's prediction should also be a pmf (**q**)

- ¹ For each input **x** we have a target label *y*
- ² One-hot encoding converts *y* to a pmf (**p**) (e.g., $y_n = 2 \rightarrow \{0, 0, 1, 0\}$
- ³ Hence, the DNN's prediction should also be a pmf (**q**)
- ⁴ Loss function should compare **p** and **q**

¹ Information contained in an event *x* can be computed given the probability of that event *P*(*x*)

- ¹ Information contained in an event *x* can be computed given the probability of that event *P*(*x*)
- ² Higher the *P*(*x*), lesser is the information (less 'surprising')
- ¹ Information contained in an event *x* can be computed given the probability of that event *P*(*x*)
- ² Higher the *P*(*x*), lesser is the information (less 'surprising')
- 3 Hence, the information can be calculated as $h(x) = -log_2(P(x))$
- ¹ Information contained in an event *x* can be computed given the probability of that event *P*(*x*)
- ² Higher the *P*(*x*), lesser is the information (less 'surprising')
- 3 Hence, the information can be calculated as $h(x) = -log_2(P(x))$
- ⁴ This is also the number of bits required to encode *x*

¹ Entropy is the number of bits required to encode a randomly chosen message (x) from a probability distribution $p(x)$

- ¹ Entropy is the number of bits required to encode a randomly chosen message (x) from a probability distribution $p(x)$
- ² Skewed distribution has less entropy, uniform/balanced distribution has more entropy

¹ One message *x* needs −*log*(*P*(*x*)) bits

- ¹ One message *x* needs −*log*(*P*(*x*)) bits
- 2 There are multiple messages with associated probabilities \rightarrow entropy $H(X) = -\sum P(x) \cdot log_2(P(x))$

- ¹ One message *x* needs −*log*(*P*(*x*)) bits
- 2 There are multiple messages with associated probabilities \rightarrow entropy $H(X) = -\sum P(x) \cdot log_2(P(x))$
- 3 $H(p) = -\sum_{i} p_i \cdot log_2(p_i)$

1 Cross-entropy $H(p,q)$ is the average number of bits required to encode the messages from a source distribution *p* when encoded with a different model *q*

- **1** Cross-entropy $H(p,q)$ is the average number of bits required to encode the messages from a source distribution *p* when encoded with a different model *q*
- 2 $H(p,q) = -\sum_{i} p_i \cdot log_2(q_i)$
- ³ Note that cross-entropy is not symmetric metric, i.e, $H(p,q) \neq H(q,p)$

- **1** Cross-entropy $H(p,q)$ is the average number of bits required to encode the messages from a source distribution *p* when encoded with a different model *q*
- 2 $H(p,q) = -\sum_{i} p_i \cdot log_2(q_i)$
- ³ Note that cross-entropy is not symmetric metric, i.e, $H(p,q) \neq H(q,p)$

- **1** Cross-entropy $H(p,q)$ is the average number of bits required to encode the messages from a source distribution *p* when encoded with a different model *q*
- 2 $H(p,q) = -\sum_{i} p_i \cdot log_2(q_i)$
- ³ Note that cross-entropy is not symmetric metric, i.e, $H(p,q) \neq H(q,p)$
- ⁴ Cross-entropy between a distribution and itself (*H*(*p, q*)) gives the entropy of the distribution *H*(*p*)

1 KL-Divergence : average number of extra bits required to represent a message with distribution *q* instead of *p*

1 KL-Divergence : average number of extra bits required to represent a message with distribution *q* instead of *p*

$$
\mathfrak{D} \ \ H(p,q) = H(p) + KL(p||q) \ \ \text{where} \ KL(p||q) = \sum p_i \cdot log\left(\frac{p_i}{q_i}\right)
$$

¹ Widely used in classification problems (e.g. logistic regression, NNs)

- ¹ Widely used in classification problems (e.g. logistic regression, NNs)
- ² Each label has a known label that is converted into a distribution with 1 and 0s (one-hot encoding)

- ¹ Widely used in classification problems (e.g. logistic regression, NNs)
- Each label has a known label that is converted into a distribution with 1 and 0s (one-hot encoding)
- ³ A model predicts probability that sample belongs to each of the classes

- ¹ Widely used in classification problems (e.g. logistic regression, NNs)
- Each label has a known label that is converted into a distribution with 1 and 0s (one-hot encoding)
- ³ A model predicts probability that sample belongs to each of the classes
- ⁴ Cross-entropy can be used to calculate the difference between the distributions

¹ Random variable is the sample

- ¹ Random variable is the sample
- ² Events are the classes

- ¹ Random variable is the sample
- ² Events are the classes
- ³ Target distribution (or, groundtruth) is one-hot encoding *p*, and model predicts a distribution *q*

¹ Typically last layer in the DNN classifier is linear (without a nonlinearity)

- ¹ Typically last layer in the DNN classifier is linear (without a nonlinearity)
- ² Predicts the confidences to each class (may not lie in [0*,* 1])

- Typically last layer in the DNN classifier is linear (without a nonlinearity)
- Predicts the confidences to each class (may not lie in [0*,* 1])
- But, we need probabilities

- ¹ Typically last layer in the DNN classifier is linear (without a nonlinearity)
- ² Predicts the confidences to each class (may not lie in [0*,* 1])
- ³ But, we need probabilities
- ⁴ Softmax operation
	- \bullet squashes the predicted confidences to lie in $[0, 1]$

- ¹ Typically last layer in the DNN classifier is linear (without a nonlinearity)
- ² Predicts the confidences to each class (may not lie in [0*,* 1])
- ³ But, we need probabilities
- ⁴ Softmax operation
	- \bullet squashes the predicted confidences to lie in $[0, 1]$
	- make them probabilities (i.e. sum to 1)

$$
\mathbb{O}(\alpha_1, \alpha_2, \dots, \alpha_C) \rightarrow \left(\frac{e^{\alpha_1}}{\sum_i e^{\alpha_i}}, \frac{e^{\alpha_2}}{\sum_i e^{\alpha_i}}, \dots, \frac{e^{\alpha_C}}{\sum_i e^{\alpha_i}}\right)
$$

$$
\begin{array}{ll}\n\mathbf{O} & (\alpha_1, \alpha_2, \dots, \alpha_C) \rightarrow \left(\frac{e^{\alpha_1}}{\sum_i e^{\alpha_i}}, \frac{e^{\alpha_2}}{\sum_i e^{\alpha_i}}, \dots, \frac{e^{\alpha_C}}{\sum_i e^{\alpha_i}} \right) \\
\mathbf{O} & (\alpha_1, \alpha_2, \dots, \alpha_C) \rightarrow (q_1, q_2, \dots, q_C)\n\end{array}
$$

¹ Target distribution *p* has 1 at the position of correct label and 0 at rest of the components

- ¹ Target distribution *p* has 1 at the position of correct label and 0 at rest of the components
- $P \cdot H(p,q) = \sum p_i \cdot log(q_i) = -log(q_c)$, where c is the groundtruth class of the sample

- ¹ Target distribution *p* has 1 at the position of correct label and 0 at rest of the components
- $P \cdot H(p,q) = \sum p_i \cdot log(q_i) = -log(q_c)$, where c is the groundtruth class of the sample
- ³ The cross-entropy loss is
	- small when the model predicts high probability to the groundtruth class $(q_c \approx 1)$

- ¹ Target distribution *p* has 1 at the position of correct label and 0 at rest of the components
- $P \cdot H(p,q) = \sum p_i \cdot log(q_i) = -log(q_c)$, where c is the groundtruth class of the sample
- ³ The cross-entropy loss is
	- small when the model predicts high probability to the groundtruth class $(q_c \approx 1)$
	- large if the model assigns smaller probability for the groundtruth class $(q_c \approx 0)$

[Colab Notebook: Backword\(\)](https://colab.research.google.com/drive/17M3Jy4ohm0sCht2xFYwbBLGitzjDWrTF?usp=sharing)